Acta Crystallographica Section E Structure Reports Online

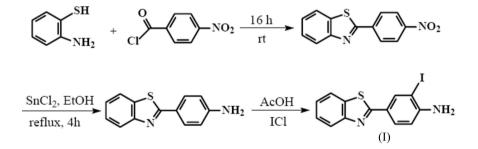
ISSN 1600-5368

Wu-Shang Wang,^a* Min Gao,^b Xiangji Chen^c and Boli Liu^c

^aNorthwest Institute of Nuclear Technology, Xi'an, ShannXi 710024, People's Republic of China, ^bDepartment of Applied Chemistry, Faculty of Science, Xi'an Jiaotong University, Xi'an, ShannXi 710049, People's Republic of China, and ^cCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China

Correspondence e-mail: nintwws@yahoo.com.cn

Key indicators


Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.006 \text{ Å}$ R factor = 0.030 wR factor = 0.072 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-(4-Amino-3-iodophenyl)-1,3-benzothiazole

The title molecule, $C_{13}H_9IN_2S$, is composed of two planar units, namely a substituted aminophenyl ring and a benzothiazole ring system. The maximum deviations from the mean planes fitted through the ring atoms are only 0.010 (5) and 0.027 (6) Å for the aminophenyl and benzothiazole, respectively. In the solid state, the I atom lies on the same side of the molecule as the S atom rather than the N atom of the thiazole ring.

Comment

Alzheimer's disease (AD), the most common form of dementia in adults, is a neurodegenerative disease characterized by progressive cognitive decline, memory impairment and behavioural changes. Both the incidence and the prevalence of AD increase sharply with age. The accumulation of β -amyloid $(A\beta)$ plaques in the brain may be a key risk factor associated with AD (Hardy et al., 2002; Selkoe, 2000). Therefore, radiolabelled imaging probes for A β plaques may provide valuable information pertinent to the initiation and progression of AD. Of the A β -imaging agents that have been reported previously, radionuclide-labelled 2-(4-aminophenyl)benzothiazole (BTA) analogues are very promising. ¹²³I-labelled 2-(4-aminophenyl)benzothiazole is a potential $A\beta$ imaging probe (Wang *et al.*, 2003). In order to study the quantitative structure-activity relationship of 2-(4-amino-3-iodophenyl)benzothiazole analogues, the determinaton of the structure of the title compound, (I), is important.

Iodination reactions may occur at the 3'- or 5'-position of 2-(4'-aminophenyl)benzothiazole. In order to confirm the position of the iodine, the structure of (I) was determined by a single-crystal X-ray diffraction experiment. The molecular structure of (I) is depicted in Fig. 1, and Fig. 2 shows a view of the unit cell contents. The ring atoms involved in both moieties are approxmately planar, with a maximum deviation of 0.060 (6) Å (Petricek *et al.*, 2006). In the solid state, the I atom lies on the same side of the molecule as the S atom rather than the N atom of the thiazole ring.

© 2006 International Union of Crystallography All rights reserved Received 23 September 2006 Accepted 15 November 2006 Table 1 lists some important bond distances, while Table 2 gives details of the hydrogen-bond interactions.

Experimental

The synthesis of (I) is shown in the scheme. The intermediate, 2-(4-aminophenyl)benzothiazole, was synthesized as described in the literature (Mathis *et al.*, 2002) and (I) was obtained as described by Shi *et al.* (1996). Suitable crystals were obtained by evaporation of an ethanol solution at room temperature for 7 d (m.p. 422–423 K).

Z = 4

 $D_{\rm r} = 1.857 {\rm Mg} {\rm m}^{-3}$

4249 measured reflections 2199 independent reflections 1552 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} R_{\rm int} = 0.029 \\ \theta_{\rm max} = 25.1^{\circ} \end{array}$

Mo K α radiation $\mu = 2.69 \text{ mm}^{-1}$ T = 296 (2) K Prism, colourless $0.30 \times 0.13 \times 0.09 \text{ mm}$

Crystal data

C13H9IN2S
$M_r = 352.18$
Monoclinic, $P2_1/c$
a = 7.8023 (3) Å
b = 8.7783 (4) Å
c = 18.5532 (10) Å
$\beta = 97.446 \ (4)^{\circ}$
$V = 1260.01 (10) \text{ Å}^3$

Data collection

Bruker SMART APEX-II CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.658, T_{\max} = 0.785$

Refinement

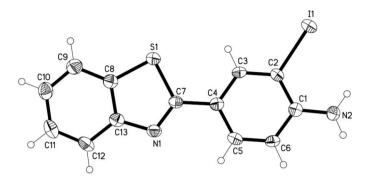
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2(F_o^2) + (0.0357P)^2]$
$wR(F^2) = 0.072$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\rm max} = 0.001$
2199 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

I1-C2	2.100 (4)	S1-C7	1.752 (4)
S1-C8	1.735 (5)		

Table 2


Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots I1$	0.86	2.79	3.248 (4)	115
$N2-H2A\cdots N1^{i}$	0.86	2.26	3.097 (5)	166
$C3-H3\cdots S1$	0.93	2.70	3.116 (4)	108

Symmetry code: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

All H atoms were discernible in a difference Fourier map. They were placed in calculated positions (N-H = 0.86, C-H = 0.93) and refined using a riding model, $U_{iso}(H) = 1.2U_{eq}(N,C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

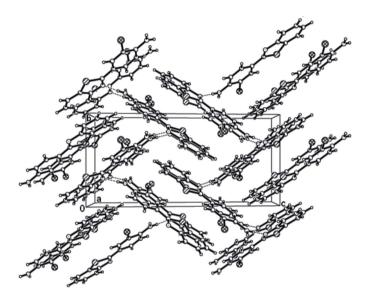


Figure 2 A packing diagram of (I). Dashed lines indicate hydrogen bonds.

SHELXTL (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (2000). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART (Version 5.625), SAINT (Version 6.36) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hardy, J. & Selkoe, D. J. (2002). Science, 295, 353-356.
- Mathis, C. A., Bacskai, B. J., Kajdasz, S. T., Mclellan, M. E., Frosch, M. P., Hyman, B. T., Holt, D. P., Wang, Y., Huang, G. F., Debnath, M. L. & Klunk, W. E. (2002). *Med. Chem. Lett.* 12, 295–298.
- Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2000. Institute of Physics, Czech Academy of Sciences, Praha, Czech Republic.
- Selkoe, D. J. (2000). Nat. Biotechnol. 18, 823-824.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. (1996). J. Med. Chem. 39, 3375–3384.
- Wang, Y., Mathis, C. A., Huang, G. F., Debnath, M. L., Holt, D. P., Shao, L. & Klunk, W. E. (2003). J. Mol. Neurosci. 20, 255–260.